Microbial Life On Mars: Could Saltwater Make It Possible?


How common are droplets of saltwater on Mars? Could microbial life survive and reproduce in them? A new million-dollar NASA project led by the University of Michigan aims to answer those questions.

This project begins three years after beads of liquid brine were first photographed on one of the Mars Phoenix lander's legs.






"On Earth, everywhere there's liquid water, there is microbial life," said Nilton Renno, a professor in the Department of Atmospheric, Oceanic and Space Sciences who is the principal investigator. Researchers from NASA, the University of Texas at Dallas, the University of Georgia and the Centro de Astrobiologia in Madrid are also involved.







Globules of liquid saltwater were pictured on the leg of the Phoenix Mars Lander.




NASA/JPL-Caltech/University of Arizona/Max Planck Institute 




Scientists in the United States will create Mars conditions in lab chambers and study how and when brines form. These shoe-box-sized modules will have wispy carbon dioxide and water vapor atmospheres with 99 percent lower air pressure than the average pressure on Earth at sea level. Temperatures will range from -100 to -80 Fahrenheit and will be adjusted to mimic daily and seasonal cycles. Instruments will alert the researchers to the formation of brine pockets, which could potentially be habitable by certain forms of microbial life.


Evidence of water flow on Mars




Credit: NASA




Their colleagues overseas will seed similar chambers with salt-loving "extremophile" microorganisms from deep in Antarctic lakes and the Gulf of Mexico. The will observe whether these organisms survive, grow and reproduce in brines just below the surface of the soil. All known forms of life need liquid water to live. But microbes don't need much. A droplet or a thin film could suffice, researchers say.




Comments